Exploring Conjugate Addition Activity in Pseudozyma antarctica Lipase B
نویسندگان
چکیده
Multifunctional enzymes have alternative functions or activities, known as “moonlighting” or “promiscuous”, which are often hidden behind a native enzyme activity and therefore only visible under special environmental conditions. In this thesis, the active-site of Pseudozyma (formerly Candida) antarctica lipase B was explored for a promiscuous conjugate addition activity. Pseudozyma antarctica lipase B is a lipase industrially used for hydrolysis or transacylation reactions. This enzyme contains a catalytic triad, Ser105-His224-Asp187, where a nucleophilic attack from Ser105 on carboxylic acid/ester substrates cause the formation of an acyl enzyme. For conjugate addition activity in Pseudozyma antarctica lipase B, replacement of Ser105 was assumed necessary to prevent competing hemiacetal formation. However, experiments revealed conjugate addition activity in both wild-type enzyme and the Ser105Ala variant. Enzyme-catalyzed conjugate additions were performed by adding sec-amine, thiols or 1,3-dicarbonyl compounds to various α,β-unsaturated carbonyl compounds in both water or organic solvent. The reactions followed Michaelis-Menten kinetics and the native ping pong bi bi reaction mechanism of Pseudozyma antarctica lipase B for hydrolysis/transacylation was rerouted to a novel ordered bi uni reaction mechanism for conjugate addition (Paper I, II, III). The lipase hydrolysis activity was suppressed more than 1000 times by the replacement of the nucleophilic Ser105 to Ala (Paper III).
منابع مشابه
Intermediate Production of Mono- and Diolein by an Immobilized Lipase from Candida antarctica
Lipase from Candida antarctica, fixed on macroporous acrylic resin, has been used for the intermediate production of mono- and diolein by hydrolysis of triolein. The effect of altering concentrations of triolein and glycerol and the function of the molecular sieve on the hydrolysis reaction of triolein were investigated. The highest hydrolysis yield was observed for the utmost concentration of ...
متن کاملActivation of immobilized lipase in non-aqueous systems by hydrophobic poly-DL-tryptophan tethers.
Many industrially important reactions use immobilized enzymes in non-aqueous, organic systems, particularly for the production of chiral compounds such as pharmaceutical precursors. The addition of a spacer molecule ("tether") between a supporting surface and enzyme often substantially improves the activity and stability of enzymes in aqueous solution. Most "long" linkers (e.g., polyethylene ox...
متن کاملAlleviation of proteolytic sensitivity to enhance recombinant lipase production in Escherichia coli.
Two amino acids, Leu149 and Val223, were identified as proteolytically sensitive when Pseudozyma antarctica lipase (PalB) was heterologously expressed in Escherichia coli. The functional expression was enhanced using the double mutant for cultivation. However, the recombinant protein production was still limited by PalB misfolding, which was resolved by DsbA coexpression.
متن کاملDirect xylan conversion into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma antarctica PYCC 5048(T).
Mannosylerythritol lipids (MEL) are glycolipid biosurfactants, produced by Pseudozyma spp., with increasing commercial interest. While MEL can be produced from d-glucose and d-xylose, the direct conversion of the respective lignocellulosic polysaccharides, cellulose and xylan, was not reported yet. The ability of Pseudozyma antarctica PYCC 5048(T) and Pseudozyma aphidis PYCC 5535(T) to use cell...
متن کاملCandida antarctica Lipase B Immobilized onto Chitin Conjugated with POSS® Compounds: Useful Tool for Rapeseed Oil Conversion
A new method is proposed for the production of a novel chitin-polyhedral oligomeric silsesquioxanes (POSS) enzyme support. Analysis by such techniques as X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the effective functionalization of the chitin surface. The resulting hybrid carriers were used in the process of immobilization of the lipase type b from Candida antarctic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009